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Abstract. It is pointed out that the Brownian diffusive spread of a gaseous suspension of 
particles (‘aerosol’) will be decreased due to the mutual coagulation of the particles, which 
gives rise to a continually decreasing effective particle diffusion coefficient. This leads to 
a modified mean-square particle displacement which in general increases less rapidly with 
time than the linear variation characteristic of non-interacting particles, and analytic results 
are obtained for this displacement in the regimes Kn <c 1 and Kn >> 1 for diffusion in one, 
two and three dimensions. The effects of coagulation, both on particle displacement and 
particle growth, become less important as the number of dimensions increases, and in the 
3D case it is shown that despite coagulational growth, particle sizes cannot exceed a certain 
maximum. Calculation of numerical values suggests that measurements of the modified 
spread could provide useful experimental data on coagulation effects. 

1. Introduction 

It is well known that the distribution of particulate matter suspended in a stationary 
gas and undergoing Brownian motion is described by the standard diffusion equation. 
The solution of this equation then gives rise to an expression for the mean-square 
particle displacement 7 after time t, and in one dimension this takes the form _ _  

r 2 =  ri+2Dt (1) - 
where D is the particle diffusion coefficient and 3 is the value of r2 at t = 0 (Friedlander 
1977, hereafter referred to as F). Thus for large values of t, 

- 
(r2)’I2cc t’”.  ( 2 )  

The above results assume that the particles retain their individual identity throughout 
the diffusive process, but in practice the random Brownian motion which gives rise to 
diffusion will also lead to collision and coagulation of the particles (Smoluchowski 
1917). The resulting increase in particle size will modify the effects of diffusion since 
D is a function of the particle volume, and it is this modification which we are currently 
concerned with investigating. The problem is somewhat complicated as it involves 
both particle coagulation and diffusive flow, and while considerable work has been 
done on these aspects separately, very little has been done on any real physical problem 
involving coagulation together with a spatial variation. The reason is simply that the 
equation for the complete particle distribution ((7) and (8) below) is very difficult to 
tackle directly owing to its complicated mathematical structure. In view of this we 
shall confine our attention to the way in which equations (1) and (2) become modified 
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by the existence of coagulation, and in particular, we shall show that by making certain 
plausible assumptions, relatively simple analytic results may be obtained. 

We note at this stage that the problem may be tackled in one, two or three dimensions. 
In one dimension we consider a particle distribution which spatially varies with x but 
which is independent of y and z ( - c o s y ,  z S  +CO). In two dimensions we suppose 
the distribution to exhibit cylindrical symmetry, varying only with p = ( x 2 + y 2 ) 1 / 2  and 
being independent of z (-COS z s +CO), while in three dimensions the spatial distribu- 
tion is taken to exhibit spherical symmetry, depending only on r = (.x2+ y’+ z’)”’. 

Now, in general the effect of coagulation will be to decrease the diffusive spread 
since D decreases with increasing particle volume (see equations (12) below), and 
hence decreases with increasing time. This decrease in diffusive spread will be coupled 
to the particle growth through a sort of feedback mechanism. Thus, consider a second 
situation in which an identical aerosol is suspended in a different gas whose particle 
diffusion coefficient is less than that of the first gas. This smaller diffusion coefficient 
will result at any later time in a smaller spatial spread for the second aerosol, and this 
will give rise to greater growth for particles of the second aerosol, since the coagulation 
growth rate varies quadratically with the particle concentration. The greater size of 
the particles in the second aerosol will further limit their spatial spread compared with 
the first aerosol, and this in turn will further increase their relative growth and decrease 
their relative mobility. The net effect of coagulation therefore is that with the passage 
of time it tends to enhance the localising effect of an initially smaller diffusion coefficient. 
Further, since the particle coagulation growth rate increases with the particle concentra- 
tion it is to be expected that the above effects will be more pronounced for diffusion 
in one dimension, where the concentration varies with time a%( r’)-’/’, than in two 
and three dimensions where it varies respectively as ( r2)-’  and ( r2)-”’. In accordance 
with this, we shall see later that even in the presence of coagulation the relation (2) 
still applies in three dimensions after a sufficiently long time, though with a modified 
constant of proportionality, while in two dimensions, and even more in one dimension, 
the functional form of r 2 ( t )  corresponds to a slower than linear increase in t. 

It is clear from the above discussion that for sufficiently short times and low particle 
concentrations the effects of coagulation are negligible and the usual results of diffusion 
theory apply. A conservative estimate of the maximum time for this to be so is readily 
obtained by considering coagulational particle growth, assuming no diffusive spread. 
For the situation where the particle size is greater than the gas molecular mean free 
path l, the standard theory of Brownian coagulation gives (Twomey 1977) 

aNlat = -(4kT/37)N2 ( 3 )  
where N is the total particle number density and 7 is the coefficient of gas viscosity. 
If CP is the proportion of space occupied by particulate matter of mean particle volume 
V, N = CP/ V and equation (3) yields 

dV/dt  = 4kT@/37. (4) 
If the particle volume increases from V to V+AV in time f, then coagulation can be 
neglected if A V /  V<c 1 ,  and hence from equation (4) we find that coagulation can be 
neglected if 

t << v 7 R 3 /  kTCP ( 5 )  

tcc 10IoR3/@. ( 6 )  

where R is the mean particle radius. Applying this to air at T = 300 K then gives 
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For typical aerosols R lies in the interval 10-6-10-3 cmt and 0 in the interval 10-”-10-’. 
The right-hand side of equation (6) can thus lie in the interval 10-3-10’2 s. Although 
at the upper end of this range inequality (6) will obviously be satisfied for all times 
of interest, at the lower end this will certainly not be so. This gives a clear motivation 
for the approach we develop in this paper. 

In order to carry through our programme it is necessary to have simple analytic 
expressions for the particle diffusion coefficient and coagulation kernel. Such 
expressions only exist in the limits of K n  <( 1 and K n  >> 1 (where K n  = I /  R ) ,  and our 
work will therefore be confined to these two limiting situations. For convenience we 
shall refer to particles lying in these two size regimes as ‘large’ and ‘small’ respectively, 
and the basic equations we shall derive ( (13 )  and (26)) will only be valid for these 
size limits. 
- In 0 0  2 and 3 we obtain respectively equations for d’;I/dt and dV/dt  in terms of 
r2 and V, where V is the mean particle volume. The sojution of this pair of coupled 
equations is dealt with in § 4, leading to expressions for r2 as a function of t for various 
cases of interest. It will be seen that these expressions are in agreement with the results 
of the physical discussion given above. 

2. Calculation of d 7 / d t  

For the sake of clarity of exposition we shall develop the detailed argument for the 
one-dimensional problem, noting as we proceed how the results are modified for the 
cases of two and three dimensions. 

Let n ( u ,  x, t )  du be the number of particles with volumes lying between o and U + du 
per unit volume of gas at position x and time t. Then the general equation governing 
n takes the form (F)  

an 
-=D(u) ,+  - 
a i  ax a2n ( : r ) c o a g  

(7) 

where D( U )  is the volume dependent particle diffusion coefficient. Here (an la t ) , , , ,  
represents the rate of change of n due to Brownian coagulation, being given by 

($) = f P( U, u - U ) n ( U )  n ( u - U )  du - n ( u )  
coag 

where P ( u ,  U )  is the kernel describing the coagulation. The form taken by P(u, U )  
depends on the size of the particles. For ‘large’ particles, we have (F) 

while for ‘small’ particles 

where p is the particle density. 

given by 

P ( u ,  U )  = ( ~ ~ ~ / ~ ~ ) ( U ~ ’ ~ + U ’ ’ ~ ) ( U - ~ ’ ~ + U - ~ ’ ~ )  ( 9 a )  

P(u, U )  = ( 3 / 4 ~ ) ” ~ ( 6 k T / p ) ” ~ ( u  + u ) ” ~ ( u ” ~ +  U ~ ’ ~ ) ~ ( U V ) - ~ ’ ~  ( 9 b )  

Now, the mean-square displacement of the particulate matter in the x direction is 

- 
r 2 ( t )  = 4;’ ioa un(u, x, t ) x 2  du dx (100) 

t Although at the lowest end of this interval R < 1, it may be shown from the relevant formulae for this 
latter regime that the greatest change to the right-hand side of equation ( 5 )  is to decrease it by a factor -3 .  
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where 

bl = jOm un(u, x, t )  du dx. 
-m 

bl is clearly independent of t as it represents the total volume of particulate matter 
contained in a column of unit cross sectional area extending from x = -CO to +CO, and 
this is unaffected by both diffusion and coagulation. Thus 

We substitute for an/a t  from equation (7),  when the contribution arising from 
(an/dt),,,, is zero corresponding to the conservation of particle volume during coagula- 
tion. In the contribution arising from the diffusion term of equation (7) we integrate 
twice ‘by parts’ with respect to x, when the boundary terms vanish and we finally obtain 

d P ( t )  2 
-=- Im Iom u D ( u ) n ( v ,  x, t )  du dx. 

d t  di --OD 

Now, the form for D(u)  depends on whether the particles are ‘large’ or ‘small’. In 
the former case 

D(u)  = ( 2 / 3 ” 2 ~ ) 2 ’ 3 ( k T / 6 ~ ) u - 1 ’ 3  ( 1 2 a )  

while in the latter, 

where p’ is the gas density, m is the mass of a gas molecule and a is the accommodation 
coefficient (F). Thus D( U )  0: U-’ with s = f or I ,  and hence we obtain from equation (1  1 )  

d;?( t) /dt  = 2 0 (  W) (13)  

with 7 being the mean value of U” taken over all the particles. We note that in the 
absence of coagulation equation (13)  implies equation (1 )  with D evaluated for the 
volume W given above. 

For the two- and three-dimensional problems described in the introduction r refers 
respectively to the particle displacements from the z axis and the origin. By following 
through the analogues of the above arguments for these two cases it is readily shown 
that d 7 (  t ) /d t  = 2 p D (  W )  where /3 = 2 and 3 respectively for two and three dimensions. 

3. Calculation of dV/dt  

The differential equation (13)  for r’( t )  involves the weighted mean particle volume W 
which is an as yet unknown function of t. In order therefore to obtain r 2 ( t )  it is 
necessary to supplement equation (13)  with an equation which effectively determines 
W ( t ) .  To do this we begin by considering the mean particle size V, given by 

V =  dl/N(t) (15)  
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where 

N = I-: Iom n( U, X, t )  du dx. 

As pointed out in 0 2, 41 is independent of t, and so 

dV 41 d N  _-  _ _ -  - 
dt  N2 d t ’  

We substitute for (anlat) from equation (7) in the expression for dN/dt ,  when the 
contribution from the diffusive term vanishes as anlax + 0 as x + *CO. Thus we obtain 
(Twomey 1977) 

To progress further we now define the total number of particles m and mean particle 
volume B at (x, t )  by 

m(x, t )  = n(u, x, t )  du (19a) 

C(x, t ) =  un(u, x, t )  du/m(x, t )  (19b) 

IoG 
IoS 

and express n ( u ,  x, t )  in the form 

n(u,x,t)=-g :,x,t . 
:;:t: ) 

In the case of spatially independent coagulation, it is known that if the transformation 
(20) is used (with x suppressed throughout), then the variation in n with increase in 
t is mainly described by a decrease in m ( t )  and an increase in O ( t ) .  The change in 
the function g (  w, t )  is relatively small, where w = (U/ e), and indeed as t + CO, g tends 
to a limiting form, the so-called ‘self-preserving distribution’ (Friedlander and Wang 
1966). In accordance with this picture, we shall now assume in our spatially dependent 
problem that in equation (20), g depends on x only through [ u / f i ( x ,  t)], and does not 
exhibit any explicit x dependence. This is, of course, equivalent to assuming that the 
shape of n( U, x, t )  is independent of x, and while this will not hold exactly, it would 
appear to be a reasonable assumption in our work, where we are only concerned with 
calculating a particular average over the distribution r2( t ) ,  rather than the detailed 
form of n(u, x, t).  m ( x ,  t ) ,  on the other hand, will vary with x, corresponding to the 
spatial variation in the aerosol distribution, while B(x, t )  will also exhibit a potentially 
significant x dependence, since smaller particles will have diffused further from the 
original region in which the aerosol was localised and therefore 5 may be expected to 
decrease as we move away from this region. 

We now substitute the form (20) for n(u, x, t )  into equation (18), noting that the 
expressions for P (  U, U )  given in equations (9) both satisfy P(Au,  Au) = A“P( U, U), where 
LY = 0 and respectively for (9a)  and (9b). On introducing 

fb, t )  = m(x ,  t ) l  N 

d Vldt = f c P l  BE 

(21) 

(22) 

we then obtain 
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where 

B = low lom P (  w, w‘)g( w, t)g( w‘ ,  t )  dw dw’ 

m 

E = 1 [a(x, t)]”[f(x, t ) ] ’  dx. 

[omg(w,t)dw= lom wg(w, t )dw=l  

-CO 

We note that it readily follows from equations ( 2 0 )  and ( 2 1 )  that 

a 

f(x, t )  dx = 1. I., 
To simplify the above expression for E, we first remark that the power of ij (0 or 

a )  in the integral is much less that the power of f  ( 2 ) .  This suggests that even if the x 
variation of B and f are of the same order, a satisfaciory approximation would be to 
replace [B(x, t ) ] ”  by the x independent value [ V ( t  ,la, since V( t )  is the mean over x 
of B(x, t )  weighted with factor f(x, 1 ) .  This procedure is clearly exact if a = 0, and 
even for a = a ,  a detailed numerical check alcng the lines followed later in this section 
shows that with plausible assumptions about the form of v(x) and f(x) ,  the error 
incurred in this replacement is at most a few per cent. This approximation therefore 
allows equation (22) to be expressed in the form 

d V/dt = i A B 4 ,  V” (26) 

To tackle A we shall suppose that f(x, t )  corresponds to a pulse centred at the origin, 
i.e.f(x, t )  is an even function, with a maximum at x = 0, which decreases monotonically 
as 1x1 increases and becomes effectively zero for large 1x1. We shall also assume that 
with the passage of time this pulse becomes progressively wider, but essentially retains 
the same shape so that f(x, t )  may be expressed in the form 

f ( x ,  t )=S[x/a( t ) l  (28) 
where S is a specified function of [x /a ( t ) ]  and a ( ? )  is an arbitrary function of t with 
the dimension of length. The constant of proportionality in relation ( 2 8 )  is defined 
through equation ( 2 5 b ) ,  and the form ( 2 8 )  then corresponds to assuming that a change 
in t is equivalent to a change in scale of x. We note that in the absence of coagulation 
such a form for f satisfies equation (7) if a(  t )  = 2D1’2t1/2 and S(  6) = exp(-02). It is 
shown in appendix 1 that if the form ( 2 8 )  is used in equation ( 2 7 ) ,  we obtain the result 

A ( ? )  = C , / X ( t )  (29) 

(30) 

where 

X (  t )  = [7( t ) y  

and 

C1 = Im -e [S(O)]’d@( -m 0 2 S ( 6 )  d6)”2( lm -CO S ( 0 )  d6)-’l2. (31) 
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It is clear that the same value for C,  is given by S(  e )  and as( be)  ( a  and b constants), 
and we might reasonably expect the value of C, not to depend critically on the precise 
form of S ( e ) ,  for any S ( 0 )  which corresponds to the pulse shape described above. 
This is borne out by a calculation of the value of C,  for the following cases. 

(i)  S (  e )  = exp( -e2); C,  = 0.28 
(ii) S ( e ) = 1  for l e l< l ,S (e )=Ofor  l e l > l ;  C,=O.29 
(iii) S (  e )  = 1 - O2 for 101 < 1 ,  S (  e )  = 0 for 101 > 1 ;  C,  = 0.27 
(iv) S (  0 )  = ( 1  + 8 ’ )  :; C,  = 0.40. 

We note that the value of C,  for case (iv) is rather larger than that for cases (i), (ii) 
and (iii), which among themselves are in close agreement. This disparity corresponds 
to the fact that in case (iv) the value of S ( e )  is relatively large in the ‘wings’ of the 
pulse, i.e. for 8 >> 1 .  This in turn suggests that the first three values probably form 
more realistic estimates of C,, since in practice one is generally dealing with a spatial 
distribution which is effectively zero outside some region. 

We now proceed to consider B, given by equation (23). We note that the function 
g(w) is always non-negative (Os w s m )  and satisfies the two equations (25a). For 
such a function these latter two conditions act as powerful constraints which drastically 
limit any possible variation in the value of B. Thus if P ( u ,  U )  is given by equation 
(9a) we have 

B = 4 k T ( I : g ( w ) d w I : g ( w ’ ) d ~ ~ + j ] : w ” 3 g ( w ) d w ~ ~  377 w-”’g(w)dw). (32) 

It is seen from equations (25a) that 1; w“g(w, t )  dw is independent of t for n =0,  1 
and this implies not only that the first product of integrals in equation (32) is certainly 
independent of t ,  but also that the t variation of the second product would be expected 
to be small. This is supported by the fact that the qualitative behaviour of g ( w )  is 
generally of a standard form: as w increases from zero, g( w )  increases monotonically 
from zero before passing through a single maximum and then decreasing monotonically 
to zero as w + m. This conclusion, that. any variation in B would be expected to be 
small, is further borne out quantitatively by a detailed calculation of B using for g( w )  
the standard gamma distribution which is known to give a reasonable representation 
of the particle size spectrum (Levin 1954, Scott 1968, Williams 1986). This distribution 
takes the form 

g( w )  = Cw4 exp( - D w )  (33) 
where the constants C and D are given in terms of the parameter q by the conditions 
(25a). The quantity in brackets ( ‘J’)  in equation (32) will thus be given as a function 
of q, and consideration can then be given as to how J ( q )  varies with q ;  since g(0) 
must be finite, we are only interested in q 2 0. The details are given in appendix 2 
where it is shown that as q increases from 0 to 03, J decreases monotonically from 
2.21 to 2.00. This implies that even if substantial variations in q occur with the passage 
of time, the effect on B will be minimal. 

For P ( u ,  u )  given by equation (9b) we have 
I-= roc B = G J O  Jo ( U U ) - ” ~ (  U + u) ’ l2 (  U’/’+ ~ ” ~ ) ~ g (  u ) g (  U )  du du (34a) 

where 

G = ( 3 / 4 ~ ) ’ / ~ ( 6 k T / p ) ‘ / ~ .  (34b) 
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Although the double integral in (34a) cannot be expressed as the sum of products of 
single integrals (owing to the (U + v)'12 term), nevertheless the above discussion suggests 
that since the powers of U and U in the integrand lie in the interval [0, I]  it would be 
expected that the temporal variation of B would be small. This is borne out by a 
calculation of B using the gamma distribution (33). The details are given in appendix 
2 where it is shown that as q increases from 0 to 00, B decreases monotonically from 
7.OG to 5.7G. Finally we make the point that, although according to the above 
discussion small temporal variations in B may occur initially, we can reasonably expect 
that after a certain time even these small variations may well vanish if g tends to a 
'self-preserving distribution' when t + CO, as it does in the spatially independent situ- 
ation. 

On the basis of the discussion in the previous two paragraphs we shall assume that 
C ,  and B are independent of time. Making use of equation (29) this then allows us 
to express equation (26) in the form 

d V/dt = rl V"X-' (35a) 

rl = + B c , ~ , .  (35b)  

The analogue of the above development for the cases of two and three dimensions 
may be carried through without any difficulties. For two dimensions we deal with 
n( U ,  p, 1 )  and all integrals of the form J:m dx above are now replaced by Jr p dp. The 
final result thus obtained is 

dV/dt  = I'2V"X-2 (36) 

where 

where 

r2 = iBC242 .  (37)  

Here 42 is the total volume of particulate matter contained in a slab with parallel faces 
extending throughout the xy plane and with thickness (1/27r) in the z direction, 

c2= lom e[s(e)] 'de lom e)s(e) de(  lom es(e) de)-). (38)  

In view of the comments made earlier in the one-dimensional situation we evaluate 
C2 for the first three forms of S (  0 )  given there, and obtain respectively the values 1.0, 
1.0 and 0.9. 

For three dimensions we deal with n(u, r, t )  and all earlier integrals of the form 
JZm dx are now replaced by r2 dr. The final result obtained is 

d V/dt = r3 V"X-3 (390) 

I'3 = fBC34, .  (39b) 

where 

Here 43 is (1/47r) times the total volume of particulate matter, and 

c3= lom e2is(e)i2de( lom e4s(e) J'p o2s(e) (40) 

Calculation of C 3  for the first three forms of S (  0 )  given earlier yields respectively the 
values 1.5, 1.4 and 1.2. 
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4. Expressions for X and V 

The badc equations derived above for the one-dimensional problem are (13), which 
gives dr2/dt  in terms of a certain time-dependent mean particle volume W, and (35)  
which describes the time variation of W through an expression for dV/dt. We now 
proceed to express equation (13 )  in terms of V instead of W. Noting that equations 
(12) both take the form 

D( U )  = pv-’ (41) 

it is readily shown by following the transformations of the last section that 
r a  

where y = J w’- ’g(  w )  dw. 
0 

m W )  = y m  V) 

The discussion of the last section based on the constraints (25a) suggests that y should 
be effectively constant, with a value close to unity, and a detailed evaluation using the 
gamma distribution (33)  shows that for both s = f  and 3, y increases monotonically 
from 0.9 to 1.0 as q increases from 0 to CO. It then follows from equations (30), (41) 
and (42) and the remarks at the end of 9 2 that in general equation (13 )  may be 
expressed in the form 

dX/dt  = A V-’X-’ (43) 

where A = pyp, p being the number of dimensions. This equation is to be supplemented 
by the relevant equation for dV/dt  ((35), (36) or (39)), and these can all be expressed 
in the form 

dV/dt=r ,V“X-@. (44) 

Equations (43) and (44) constitute a pair of coupled first-order non-linear differential 
equations for X(t)  and V( t )  and a unique solution will exist if these are supplemented 
by boundary conditions that at t = 0, X = Xo and V = Vo. We are, of course, primarily 
interested in X, and therefore proceed to eliminate V by first dividing equation (44) 
by (43). This gives 

d V/dX = KV’-~X‘-’ (45) 

where K = r , / A  and n = 1 - a - s. We recall that a and s, respectively, are essentially 
a measure of how rapidly P and D vary with U, with positive values of a and s 
corresponding to larger particles coagulating more rapidly and being less mobile than 
smaller ones. The fact that the power of V in equation (45) is a + s is thus physically 
plausible. 

Equation (45) may be readily integrated to give V in terms of X. Substituting this 
into equation (43), followed by a further integration, yields t explicitly as a function 
of X. In general it is only possible to obtain X and V explicitly as functions of t in 
the limit of large t ,  when X >> X,. We therefore give below in table 1 the general forms 
for ?(XI,  together with X(t)  and V( t )  for X >>Xo. Results are tabulated for one, two 
and three dimensions, for both ‘small’ and ‘large’ particles. 

We proceed to compare the t variation of X for X >> Xo with the case of non- 
coagulating particles given at the end of table 1. It is clear that for both one and two 
dimensions the t variation of x is less rapid than the t”’ form characteristic of 
non-coagulating particles. Further, it is seen that the extent by which X(t)  departs 



1422 S Simons 

Table 1. Relationship between diffusive spread, mean particle volume and time for ‘large’ 
and ‘small’ particles in one, two and three dimensions. 

General X 

K,, << 1 

x >> x,, Y 
One 
dimension 

General X 

K,, >> 1 

x >> x,, Y 

General X 

General X 

K, ,  << 1 

x x, 

Three 
dimensions General X 

K,, cc 1 
K,, >> 1 

Non-coagulating 
particles 

All K,,  

I = ( ~ K ’ ” / ~ A ) { [ ~ ( X - X ~ ) +  Y]’/‘(X+fX,- y)-  y3I2(zx 3 0  - y)} 
where Y = K 

t jGo X[ln(X/X’)]‘/’ dX 
where Vi/3  = $ K  In(X,/X’) 

X = Et’/’[ln( EI‘/’/X’)]-’/~ 
V =  (&)’/‘[In( EI’ / ’ /X’)]~/~ 
where E = 61/4A3/4r;‘/4 

f = ( ~ A ) - ’ ( K / ~ ) ~ [ X ’ F ( X / X ’ )  - XiF(X,/X’)] 
where F(u)=2(ln ~ ) ~ - 4 ( l n  ~ ) ~ + 6 ( l n  ~ ) ~ - - 6 1 n  u+3  
and V y 6  = In(X,/X’) 

X = Ef’/2[ln(E~’’2/X.’)]-2 

where E = 36aA5/’r;’ 
v =  (bK)6[[ln(E11/Z/X’)]6 
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from a t’” variation is greater in each case for ‘small’ particles than it is for ‘large’ 
ones. This arises physically from the fact that compared with ‘large’ particles, ‘small’ 
particles undergo a greater increase in coagulation during their growth (a = compared 
with a = 0) and a greater decrease in diffusion coefficient (s  = 3 compared with s = 4). 
The combined effect is to increase the particle growth rate (compare the relevant 
expressions for V) and, as explained in the introduction, this will lead to a less rapid 
increase in X for ‘small’ particles. Regarding the dimensional dependence of the t 
variation of X ,  we note that for both ‘large’ and ‘small’ particles, the extent by which 
X ( t )  falls below a 1”’ variation is less in the 2~ case than it is in the I D  case due to 
the relatively slow variation of the logarithmic term. This is in agreement with the 
discussion given in 0 1 where it was pointed out that since coagulation effects vary 
quadratically with the particle concentration, they would be expected to be more 
pronounced in the I D  case where the concentration is proportional to X - ’  than in the 
ZD case where it is proportional to X-’ ,  and therefore falls off more rapidly for large 
times. In accordance with this, it would be expected that in the 3~ case any departure 
from a t’/’ variation for X would be even less than in the ZD case and indeed we see 
from table 1 that in the 3~ case for X >> X,, X exhibits exactly a t’l2 dependence. This 
corresponds to the fact that, unlike the I D  and 2~ cases where V +  CO as t + CO, the t 
variation of V in the 3~ case is such that as t + CO, V tends to a finite value V,. This 
occurs essentially because the smaller particle concentration in the 3~ case 
means that coagulation effects are effectively ‘frozen out’ at sufficiently long times, and 
V cannot therefore exceed a certain finite maximum value, V,. Indeed, for X >> X ,  
the form for X (  t )  is precisely that corresponding to particles with V = V,. 

The discussion in the introduction suggests that since coagulational growth increases 
with particle concentration an increase in particle concentration should lead to larger 
V and smaller X .  This is clearly exhibited by all the results in table 1 for X >> X,, 
where the expressions for V have positive powers of r, while those for X have negative 
powers. 

Finally, we refer to the point made in the introduction that one result of coagulation 
is to enhance the localising effect of a smaller diffusion coefficient D. For X >> X,, this 
is apparent in all the forms for X given in table 1, where the power of A is always 
greater than the value of 3, characteristic of non-coagulating particles. 

5. Numerical values 

In this section we list numerical results showing the effect of coagulation on diffusive 
spread. In calculating these it is necessary to bear in mind that the formulae derived 
in the last section are only valid if Kn >> 1 or Kn << 1, and this means that during the 
growth of the particles they must lie throughout in one or other of these two regimes. 
For ‘small’ particles, the initial particle dimensions cannot be less than a few times 
lO-’cm, while the final dimensions must be significantly less than 1, the molecular 
mean free path for air, which is about 7 x cm. For ‘large’ particles, the initial size 
must be significantly greater than 1, while the final dimensions cannot exceed a few 
times cm, at which value differential sedimentation of the particles becomes 
important and our theory thus becomes inapplicable. For given initial particle size we 
let t and t’ be the times for X to change from X ,  to XI in the presence and absence, 
respectively, of coagulation. We examine situations which maximise t /  t’, and it is 
clear that these will correspond to choosing that aerosol density which yields maximum 
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particle growth consistent with the particles remaining throughout in one or other of 
the above two size regimes. 

In table 2 we give for one and three dimensions, and for the two size regimes, 
suitable values for Ro and RI,  the initial and final particle radii, and for X ,  and XI. 
We also tabulate t’ and t / t ‘ ,  calculated from our earlier equations, together with 0, 
the initial proportion of space occupied by particulate matter, assuming that the initial 
spatial aerosol distribution is a square pulse. We note that all values of t / t ’  lie in the 
interval 3-7 and that the required values of 0 range from -3 x lo-’ for ‘large’ particles 
in three dimensions down to a value of -4 x lo-” for ‘small’ particles in one dimension. 

Table 2. Values of t /  t ’  and @ for aerosols and hydrosols in one and three dimensions. 

One K , K I  2 ~ 1 0 - ~  ~ X I O - ~  I 2 7 h  7 9X10-7 
dimension K, > > I  ~ X I O - ’  ~ . ~ x I o - ~  3 6 5min 6 4 x  lo-’’ 

Hydrosol 2~ io-6 4 x 1 0 - ~  I 2 35 h 350 2 x  

Three K , < < l  2x10.’  ~ x I O - ~  1 2 2.3 h 6 3 ~ 1 0 - ~  
dimensions K ,  > > 1  ~ x I O - ~  2 . 5 ~ 1 0 - ~  3 6 1.7min3 7x.10-” 

Hydrosol 2 x  10-6 1 10-3 1 2 12h 350 IxlO-’ 

Although the present work was designed primarily to deal with aerosols, an identical 
theory may also be used for the simultaneous coagulation and diffusion of hydrosols. 
As regards the requirement of maximising t /  t ’ ,  this latter context is advantageous, 
since there is nothing analogous to the ‘small’ particle regime of aerosols, and the 
‘large’ particle aerosol equations may be applied to arbitrarily small particles. Further, 
the effects of coagulation due to differential sedimentation may be minimised by using 
particles whose density is close to that of water. We therefore give in table 2 results 
for hydrosols in both one and three dimensions. Compared with aerosols these results 
correspond to substantially larger values of t l t ’ ,  and owing to the viscosity of water 
being greater than that of air by a factor of about 50, the actual values of t‘ are greater 
for water. 

Experimental measurements of the variation of diffusive spread with particle con- 
centration are-difficult owing to the requirement that a localised aerosol should be 
generated and that its subsequent development should be unaffected by convective 
fluid currents throughout the time t. If this problem were overcome it is clear that the 
values of 0 tabulated above are experimentally realisable and that the corresponding 
magnitudes of t /  t‘ are sufficiently large to be experimentally measurable. Such 
measurements could provide useful information on the relationship between coagula- 
tion effects and particle size and concentration. In particular they would offer a way 
by which the effects of coagulation could be investigated by macroscopic observations 
of the spread of a localised aerosol, rather than microscopic observations of particle 
size and number. 

It should again be emphasised that in order to derive the numerical results given 
above from the earlier analytic formulae it was necessary that particle growth should 
take place entirely within a single size regime. In order to perform the calculation 



Diffusion of aerosol particles 1425 

when growth spans the transition region between the two regimes it would be necessary 
to use expressions for D (  U )  and P (  U, U), containing the so-called Cunningham factors, 
which are valid in this region. Such expressions are given by F and Silberberg (1979), 
but since they no longer correspond to mathematically homogeneous functions of U 
and U, a numerical computation would be required, rather than the analytic approach 
developed above. If experimental results warranted it, such work would probably be 
justified since larger values of t /  t’ could then be obtained and a wider range of physical 
parameters could be used. 

6. Conclusions 

We have investigated the effects of particle coagulation on the diffusive spread of 
aerosols, and have obtained explicit analytic formulae in the regimes Knee 1 and 
Kn >> 1 for one, two and three dimensions. Our results are in agreement with what 
would be expected on physical grounds for variation with particle size and concentra- 
tion, number of dimensions and strength of diff usion coefficient and coagulation kernel. 
The numerical values obtained suggest that if experimental difficulties were overcome, 
measurement of the effect could provide a useful probe for the investigation of particle 
coagulation by macroscopic observations. Further computational work spanning the 
two above size regimes might then be justified. 
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Appendix 1 

We proceed to prove that if the form (28) is used in equation (27), then the results 
(29) and (31) are obtained. 

Taking 

f (x ,  t )  = ZS(x/a> (Al . l )  

we immediately obtain from equation (256) 
m 

Za I-, S( 6 )  d e  = 1. 

Also 
CD - 

X 2 =  r2= [ x2f(x, t )  dx 
J -m 

in view of equation (256). Using equation (Al . l )  then gives 
m 

x2=za3 I, e2s(e) de. 

(A1.2) 

(A1.3) 

(A1.4) 
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Further, using equation (Al . l )  in equation (27) yields 

(A1.5) 

Equations (A1.2) and (A1.4) are readily solved to obtain 2 and a in terms of X and 
integrals with respect to 8. Substituting for Z and a into equation (A1.5) then gives 
equations (29) and (31). 

Appendix 2 

On applying the constraints (25a) to determine C and 0, the distribution (33) takes 
the form 

g q ( w ) = [ ~ q + l ) q + ' / q ! l w q  exp[-(q+l)wl (A2.1) 

with 

(A2.2) 

Equation (32) then gives 

B =  (4kT/37)){1+[(q+5)!(q-f)!/(q!)2]}. (A2.3) 

As q increases from zero to infinity the quantity J in braces in equation (A2.3) decreases 
monotonically from 2.21 to 2.00. The latter value corresponds to the situation where 
all particles have the same volume, since 

lim g,(w)=S(w-1).  
q-rm 

Denoting the double integral in equation (34a) by I,  and using the above form 
(A2.1) for g, we have 

x exp[- (q+l ) (u+u)]du  du. (A2.4) 

To evaluate the integral we transform the variables from U, U to U, 8 defined by 

u = [ u / ( ~ + ~ ) ] c o s ~ ~  u=[u/ (q+1)]s in2  e (A2.5) 

and obtain 

Making use of the result 

(A2.6) 

sin'Bcosm o d e =  
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(Abramowitz and Stegun 1965), we finally obtain 

As q increases from zero to infinity I decreases monotonically from 7.0 to 5.7 
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